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introducing absorption, the origin of the enhancement 
is manifest from the general resonance denominator 
(K~, -- k2) -1. In (II) absorption and atomic factors are 
introduced and a graphical and numerical rendering of 
the surface of dispersion is given for variable wave- 
length and, consequently, angular settings. Finally the 
effective coefficient of absorption,/terf, is given for two 
different three-beam cases in germanium for each of the 
six sheets of the surface of dispersion. The curves show 
/~efr as a function of 2/a for the cases n = 1, 2 and 3. 
They show strikingly to what extent a perfect crystal 
can become transmittant in one of its proper modes, 
while in others it becomes more opaque. The value of 
this analytical treatment lies in the general survey it 
provides, and as such it is satisfactory. On the other 
hand, it is labor saving to use computer methods in 
future cases. 

Retrospect 

I am lucky to have spent so many of my best years in 
doing research I have loved; in having been well 
prepared for Laue's discovery by my thesis work; by 
taking an active part in developing the theory of the 
subject; by gradually simplifying the mathematics and 
by arriving at an increasingly deeper understanding of 
the varied aspects of crystal optics. 

On the other hand, my interest always centered on 
the perfect crystal in which I saw the preferred material 
for exacting optical investigation. Herein lies a strong 
limitation, and an abstraction which in important 
aspects is contrary to nature. I am happy to see how 
others have been, still are, and will be carrying on 
beyond the limitations I set for myself. 
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Abstract 

The previous theory [Kato (1976). Acta Cryst. A32, 
458-466] is improved by taking into account the 
higher-order correlations of lattice phase factors. The 
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previous coupling constants in the energy-transfer 
equations have, in general, to be reduced. In the 
simplest case of non-absorbing crystals the reduction 
factor can be given as 

oo 

R = 1 + ( r 9  - I  y V~i+')(-xgx_y, 
j=l  

where x+_g is the kinematical diffraction amplitude per 
unit length for + g reflection, and F~ j) is the correlation 
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10 ON EXTINCTION. III 

volume, which is defined for the 2jth-order correlation 
function. The quantity V~ j) is an extended concept of 
the correlation length r 2 for the second-order cor- 
relation function in the sense that V~ 1~ = r 2. The set of 
{V~ s) } characterizes the statistical nature of the 
crystalline medium. The present theory is conjectured 
to be applicable up to r 2 < A ,  in which A is the 
extinction distance. 

I. Introduction 

In previous papers [Kato, 1976a,b; (I) and (II) here- 
after], the present author formulated an energy-transfer 
equation, from the wave equation of Takagi-Taupin 
type, for describing secondary extinction. In this 
formalism the coupling constants between the direct 
and the Bragg-reflected beams were given as being 
proportional to the kinematical diffraction power per 
unit length times the correlation length of the lattice 
phase factors at two distant positions. The formulation, 
however, was limited to the cases in which the 
correlation length is much shorter than the extinction 
distance. 

A question then arises as to whether the theory can 
be extended to cover less imperfect crystals in which the 
correlation length is comparable to the extinction 
distance. In some of the literature (for example, 
Zachariasen, 1945), to meet this requirement it is 
proposed on the basis of physical intuition that the 
kinematical diffraction power be replaced by the 
dynamical diffraction power in the coupling constants. 

In this paper, the previous theory [(I) and (II)] is 
developed within the framework of secondary- 
extinction theory. The approach takes into account the 
higher-order correlation functions of the lattice phase 
factors, of order higher than second, which was the 
highest considered in the previous theory. The coupling 
constants of the previous theory have to be reduced by 
a factor which is definable from the statistical nature of 
lattice distortion. Effects of absorption in secondary- 
extinction phenomena are also discussed. The present 
theory is conjectured to be applicable to less imperfect 
crystals. 

II. Outline of the previous theory 

and u is the displacement vector of a lattice point 
referred to an ideally perfect crystal [cf. equation (3) of 
(I)]. As shown in (I), therefore, the intensities of the O 
and G beams, respectively, are written in the forms 

(Io) = (a/a)' ~ y ( i x y  ( i x _ /  (-ix'~) ~' (-ix*_,) ~' 
R R '  

x (a) zk+z~' (exp { - i [ G ( 1 , 0 ) -  G(1,1) 

+ G(2 ,1) . . . -G(k ,k) ]}  exp {i[G(I',0) 

- G( I ' , I ' )  + G(2 ' , l ' ) . . . - -G(k ' ,K ' ) I  }), 

( Ig )  = (A/a)21xgl 2 ~ ~. (ixg) I' (ix_g) k (-- ix*)  k' 
R R'  

x (--ix*g) k' (a) zk + zk,+ 2 (exp {--i[ G(1,0) 

- G(1,1) + G(2,1). . .  G(r,r) 

+ G(r  + 1, r) . . .  + G(k  + 1, k)]} 

x exp{i [G( l ' ,0 ) -  G(1 ' ,1 ') . . .  G(r' ,r ' )  

- G( r '  + 1, r ' ) . . .  + G ( k '  + 1, k')] }), 

( la)  

where k is the number of kink points of the route R and 
the indexes (r,r) and (r + 1, r) in the phase G are the 

, r (So ,S~) abbreviation of the positions (So,Sg) and r+l r 
respectively. The position coordinates (So,Sg) are 
defined by the oblique coordinate axes along the O and 
G beams with the origin at the entrance point [cf. Figs. 
1 and 2 of (I)]. The quantity {x+_g} is diffraction 
amplitude per unit length, which is proportional to the 
structure factor F+_g [cf. equation (2) of (I)] and (a) is 
an increment parameter introduced for numbering the 
position parameters. It will be reduced to zero after the 
calculation. The prime identifies the complex conjugate 
waves. 

In order to evaluate the ensemble average of the 
phase factor, each route is divided alternately by 
vertical and horizontal segments.t In the previous 
theory, the following assumptions were made. (1) The 
vertical (horizontal) segments are composed of a 
sequence of horizontal (vertical) kink pairs (KP). (2) 
The end of a vertical (horizontal) segment is associated 
with an isolated kink (IK) of a (b) type. (3) All KP's 
and IK's are separated by distances larger than the 
correlation length, r, and the correlations among KP's 
and IK's were therefore neglected. To justify the third 
assumption, it was necessary to assume that 

The basic idea of the present formulation is similar to 
the previous one. The total wave field is given by the 
sum of the wavelets which are associated with all 
possible optical routes having O and G directions in a 
zigzag way [cf. Fig. 2 of (I)]. The measurable intensity 
is an ensemble average of the intensity field expected for 
a set of lattice phases at kink points of the optical route. 
Here, the lattice phase, which will be denoted by G 
below, means 2n(g. u) where g is the reflection vector 

r ,~ I xgl-a = A (extinction distance). (2) 

This restriction, however, can be relaxed to some 
extent. In fact, there are many possible routes com- 
posed of many KP's which are not sufficiently 
separated from other KP's and IK's so that correlations 

t For convenience, 'vertical' and 'horizontal' are used for the 
directions ofthe O and G beams [see also Fig. 1 of (II)l. 
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among them cannot be neglected. The aim of this paper 
is to take such routes properly into consideration. In 
preparation, the higher-order correlation functions for a 
group of kink points are first discussed. 

In the case of (4b), on the other hand, the principal 
parts of the phase factors can be cancelled out (unless 
y~ and Y2 are larger than r). If the neighbouring kink 
pairs are well separated, f (y l ,x~ ,yz)  is reduced to 
f(Yl)  f(Y2). In general, however, it must have the form 

III. The correlation functions of higher order 

If the kink points are well separated from other kink 
points, the phase factors can be averaged independently 
of other phase factors. For this reason, in (II) it was 
sufficient to introduce the second-order correlation 
function 

f ( z ) = ( e x p { i [ G ( a , b ) - G ( a  + z, b)]}) (3a) 

= (exp { i [ -G(a ,b)  + G(a, b + z)]}). (3b) 

From the statistical isotropy and homogeneity of the 
crystal, it is safe to assume that f ( z )  is a real, even 
function. More detailed considerations are given in (II) 
and Appendix A in (II). 

In the present treatment, one needs correlation 
functions of  higher order in the forms 

f ( Y I , X 1 )  

= (exp {i[--G(1,0) + G(1,1) -- G(2,1)I}), 

f (Y l ,x l,Y z) 

= (exp { i [ -G(1,0)  + G(1,1) - G(2,1) 

(4a) 

+ G(2,2)] }), (4b) 

f( ,Y, ,x, ,Yz) = f ( Y , )  f (Y z )  + f=(yl,x,,y2), (6) 

where f2 represents the intrinsic part  of the correlation 
of two kink pairs separated by x r Obviously, f2 tends 
to zero as x 1 increases. With this scheme of notation, 
f ( y )  is identical to f l  (Y)- 

Extending the above argument, one can write the 
correlation function of higher order, 2n, as follows: 

f (Yl ,x l ,y2, . . . ,Y , , )  = fl(Yl) f~ (Yz)-.. f(Y,,) 

+ {possible products of  f l ,  f2,.-.,  fn-  1} 

+ f~(y ,x , y2 , . . . ,Y , , ) .  (7) 

If one of { x r } is larger than r, fn tends to zero. We shall 
call {fn} the intrinsic correlation function. Another 
general relation between f and f,, is given in Appendix 
A. 

The explicit form of f,, depends on the model of the 
lattice distortion. For  the present formal theory, 
however, one needs only the correlation volume defined 
by 

oo oo 

g~ n)= f ... f fn(Yl,Xl,...,Yn) d{Xr} d{Yr} .  ( S a )  
0 0 

As will be seen later, more often used is another 
correlation volume defined by 

odd: 

f O q , x .  ..., Yr,Xr, ..., Xn) 
= (exp {i[--G(1,0) + ... +G(r,r) 

- G ( r  + 1, r ) . . . - a ( n  + 1, n)]}), (4e) 

e v e n :  

f (Y ,,X l, . . .,Y,,Xr . . . .  ,Yn) 

= (exp {i [ -G(1,0)  + . . . -  G ( r , r -  1) 

+ G(r , r ) . . .  + G(n,n)]}), (4d) 

where 

x, = the distance between (r,r) and (r + 1, r), (5a) 

y~ = the distance between (r, r - 1) and (r,r). (5b) 

In the case of (4a), the phases of the nearest kink 
points can be cancelled out but the remaining phase is 
random, so that the correlation function f ( y l , x~)  must 
be zero. Similarly, the correlation functions of the 
lattice phase factors of odd numbers are always zero. 

gin)= ~ . . . ~  ~-1 f~r) fn~l,Xl,...,Yn)d{xr}dJYr}. 
0 0 r= l  

(8b) 

These correlation volumes are extended concepts of the 
correlation lengths defined by equation (2) of (II). In 
fact, it is obvious that 

V~ 1) = T1; VJ 1) = z2. ( 9 a , b )  

In order to show physical applications of the theory 
conveniently, we sometimes neglect the end effects of a 
sequence of KP's.  In this case, integrating f ( y l , xpY2 ,  
x2, . . . ,y , ,x , , . . . )  over an x,  gives the same factor for all r 
and integrating over a y~ gives a different factor which 
is, again, the same for all r. With this approximation, 
one can write the explicit expressions of equations (8a 
and b) as 

V[ n) = (v,) 2n-' f i r - ' ;  VI n) = (vz) 2n-' f ig- '  (n > 1). 

(10a,b) 

The subscripts 1 and 2 are introduced in order to 
distinguish the two cases of equations (8a and b). The 
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dimensionless quantity fl indicates the ratio of the 
correlation lengths of the kink pair itself and of the two 
kink pairs. The concrete discussion of fl is left for 
further studies. However, it should be positive in any 
case, because there exists a positive correlation of 
lattice phase in a local sense. Also it is expected that fl is 
less than unity because the correlation among kink 
pairs must be weaker than the correlation between the 
kink points themselves. As shown in Appendix A, the 
sets of correlation volumes (10) satisfy the general 
requirement (A.3). Therefore, they are regarded as 
approximate but acceptable forms of V <n). 

We shall now introduce the concept of clusters in 
terms of the intrinsic correlation functions {f~ }. 

(1) Cluster of kink pairs (CKP): This is a group of 
KP's which are associated with an intrinsic correlation 
function. A single KP may belong to many different 
clusters unless the KP concerned is well separated from 
the others. 

(2) Isolated kink cluster (IKC): This is a special 
cluster which includes an excess kink point of types (a) 
or (b) at the tail of the cluster. 

In the previous theory, the clusters associated with 
{f~} were neglected, except for fv  The present problem 
is to take into account the neglected term in expression 
(7). 

IV. Formulae for the intensities 

In the present formulation, the routes R and R '  are 
composed of a series of vertical and horizontal 
segments and the tails of the segments of R and R '  
form a correlated pair (CP) of IKC's. The expressions 
( la  and b), then, can be rewritten as 

( Io)  = (A/a)  z • Z (--tog K g) k ( - ~ *  x.*g) k' (a) zk+zk' 
R R' 

x (exp(i[Pvs])) (exp (- i [P;s]))  

x (exp(i[PIK c -  P~KC]a))''" (exp(i[Pns])) 

X (exp (--i[P~s])) (exp(i[Pmc -- P[KC]b) 

X (exp(i[Pv~]) > (exp(--i[P~s])), ( l l a )  

( Ig)  = (A/a)Zl~cgl z ~. Y (--tOg ~C_g) k (--~c* ~C*g) k' 
R R' 

x (a) zk+zk'+z (exp(i[Pvs])) (exp(-i[P~s])) 

x ( e x p ( i [ P m c - P ~ x c ] a ) ) . . .  (exp(i[Pvs])) 

x (exp(-i[P~s]))  (exp(i[Pmc - P~KC]b)) 

× (exp(i[Pns])) (exp(--i[P~s])). ( l lb)  

In these formulae, Pvs (Pns) denotes the total phase of a 
vertical (horizontal) segment and [PIKe-- P~Kc]a~t,) is 

the phase associated with a correlated pair of IKC's. 
The subscripts a and b specify the type of IKC. 

The ensemble average (exp (i[Pvs])) is nothing more 
than the correlation function given by equation (7). In 
the case of Pns, the same expression can be used 
provided that {x i } and {Yi} are interchanged. 

The ensemble average for the correlated pair of IKC 
of type (a) can be written in the form 

(exp (i[PIKc -- P~KC]a)) 
? ? t ? 

= F m + m ,  + l ( y l , U l  . . . . .  Um" ~ l ) ,U;  U m , , l ) m , , . . . , / . / 1 , V l ) ,  (12a) 
t ? P - ~__ fh+I[Vl,U,, . . . ,Um,V,Um,,. . . ,UpVl)f(u),  (12b) 

where fi and v are the vertical and horizontal distances 
between the last (excess) kinks of the routes R and R' ,  
respectively, and Fa+ I (h = m + m') is the intrinsic 
correlation function of the total kinks included in a CP. 
For mathematical convenience, the factoring of f (h )  is 
approximated in equation (12b). With this approxi- 
mation, the pair of excess kinks can be regarded as a 
kink pair, so that the remaining correlation function 
must be identical to fh+l. It is worth noting that the 
intrinsic correlation function must be used here. In fact, 
(exp(i[Pmc - -  P~KC])>  is  regarded as a factor of the 
correlation function of the total KP's of the vertical 
segments of R and R '  plus the correlated pair of IKC. 

If the initial arms of (IKC) and (IKC)' are separated 
by b, 

v = t ? +  ~ v r - - ~ v ' .  (13) 

Then, we shall use the following approximation: 
m m '  

fk+l(...,v, ...) = fh+l(...,V, ...) l-] f(Vr) l-I f ( v ' ) .  (14) 

The justification in the special case of f~(v) is discussed 
in Appendix B of (II). The justification of (14)is merely 
a matter of formal extension. 

We shall now combine the ensemble average of the 
phases for the vertical segments of R and R '  and the 
CP of IKC. Then, if the initial arms of the vertical 
segments of R and R '  are separated by 33, 

t 3 = ~ +  ~ Y r - - ~ - Y "  (15) 

With the approximation used to obtain equations (14) 
and (1 2b), one obtains 

(exp (i[Pvs])) ( exp( - - i [P~ , s ] ) ) ( exp( i [P ,Kc-  P~xc]a)) 

= f ( y , x p . . . , y , , )  f(Y'I,X'I . . . .  ,Y',) 

X f h + l ( V l , U l ,  - ' • . . , U m , Y , U  m . . . . . .  V~) 

n t l  t 

x [f@)] IF] f(yr)  YI f 0 " )  
m m t 

x l-] f (Vr)  I-I f(V'r) f(£c). (16) 

In this expression ti has been replaced by )? and the 
factor [f@)] is written explicitly. This factor comes 
from a calculation similar to that which produced 
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factor f(Yc) in equation (16) by application to the 
preceding horizontal segment. 

The next problem is to sum (16) over all possible 
routes after multiplying by the relevant factors of 
(a 2 Xg X_g) and (a 21.* K'g). Symbolically, one can write 
the sum as 

Z ~ =  ~ ~ ~ Z '  (17) 
R R'  IKC CP CKP CKP" 

First, we shall consider the operation ~CKp" The 
relevant factor to be summed is 

f(Yl,Xt,  ...,Y,,) I-I" f (yr)  ( a2 xg K_g) n. 

As shown in equation (7), the correlation function f is 
the sum of many terms, each of which is a possible 
product o f f t ,  f2 . . . .  and f ,  or a series of CKP's .  

A single term is specified by the numbers {Pl,P2...} 
of the intrinsic correlation function { f  l, f : . . .  }, and the 
total number p = ~ p:. Fixing the series of CKP,  we 
shall first sum (or integrate) over all variables {y,./a} 
and {Xr/a}. Then, the product of {fj} changes to the 

1) Pl 2) P2 product of the correlation volumes [I:2 ] [V~/ ] ... x 
(l/a) 2n-p. The terms which give the same product 
should appear (p!/pl[p2[...) times. Here, it is to be 
noted that ( p -  1) variables of {x r} are missing in the 
expression of a p product of {f/}. Adding a variable x o, 
which indicates the position of the first CKP of the 
segment, one notices that p variables are hidden. This 
implies that the first kink position of each CKP is 
arbitrarily located on the vertical segment of the length 
l o, although the order of sequence has to be fixed. Thus, 
the number of possible configurations of p clusters is 
(Io/a)P/p! 

According to the above arguments, we have 

o~ , ( lo)V,+,~ . . .  

Y : Z Zo ...... 
CKV n=O -= PI!P2!"" 

× [(-Kg x g) 2 ~Z)lp2... (18a) 

= exp [s~  1 (-Kgx_g) J V~z J) lo]. (18b) 

Here, the summation ~p: must be taken with the 
condition that the total number of kink pairs is 

n = Z j x pj. (19) 

The mathematical technique of deriving (18b) is  given 
in Appendix B. Equation (18b) can be rewritten in the 
form 

where 

= exp [-rz(xg X_g) R o lol, (20a) 
CKP 

oo 

Ro= 1 + (rz) -1 Z Vl j+l) (z) J, (21) 
j = l  

and z stands for (-xgx_g).  In these expressions, the 
relation (9b) is employed. 

Similarly, one can obtain 

Z '  = exp [--r2(K* X'g) R* l o] (20b) 
CKP 

for the conjugate wave. Similar expressions can also be 
obtained for the horizontal segment. There, the length 
of the segment l o has to be replaced by lg. 

Next, we shall proceed to the operation ~cv.  Since 
the correlated pair of type (a) is discussed here in detail, 
it is denoted by x-'(a) The relevant factors to be summed /--,CP" 
are 

IXg Iz aZ f ( ) )  fh+ l(v,u,  . . . .  , Z l m ;  Y; Utm,,"',l)~) 
m t 

X f i  f (vj)  1-] f (v))  (--Kg K_g a2) m (--K* K*._g a2) m', 

where h = m + m'. Here, consider S(m,m'), which is 
part of W(a) for a fixed pair of (m,m'), namely a single A~Cp 

CP. S(m,m'), therefore, means the sum (or integration) 
over the variables {Vr/a}, {Ur/a} and ~/a)."f There is no 
hidden variable. One can also notice that  the cor- 
relation volume V~ h+l) corresponding to fn+l is 
independent of the individual numbers of m and m'.  
Thus, one obtains 

S(m,m')= 2fKgJ z a(--KgK_g)m(--l¢ * l£*_g) m' V (h+l). (22) 

Next, we shall sum S(m,m') over the whole CP's. In 
other words we shall sum over (m,m') or (h,m), in 
which m' is replaced by h -  m. As shown in Fig. 1, 
each CP is associated with a single horizontal arm of 
the route R. Since, as will be seen later, we are 
interested in the amplitude factor of CP per single 
horizontal arm, the factor due to the (h + 1) cluster 
must be: 

21Kgl 2 a(h + 1) -1 Vz ~n+x) {z n + z h-a z* +,. . . , (z*)n+l}. 

t The variable ,~ takes positive and negative values. Also, notice 
that fh+ 1( .... 5' . . . .  ) is an even function. 

4 
.11 

(IKC + 3KP)' 

~ (IKC)' 
Fig. 1. The possible correlated pairs of  IKC associated with a 

vertical segment R. (.. .) '  indicates the cluster of  the conjugate 
waves (for h --- 3). 
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Thus, the total amplitude factor for the possible CP's is V. Remarks and discussion 

where 

~(~) = 2z21Xgl 2 aRg, (23) 
CP 

oo 

Re = (r2)-' Z (h + I)-1 V~n+ 1) 
h = 0  

X {Z h + Z h - l z *  + . . .  + (Z*) h} 

co ( Z p + ,  __ ( Z , ) h + ,  

= (h)-* Z v P  +I) 
h = 0  ( Z -  Z*) (h + 1) 

It is worth noting that Rg is a real quantity and 

(24a) 

Rg = R o (when z = z*). (24b) 

Also, for CP's of type (b), we shall have the similar 
expression 

~(0) = 2z-21Kgl 2 aRg. (25) 
C P  

The final step of the calculation is to perform the 
operation ~tKc. What we need to do is to take the 
product of S = ~cP ~cm, ~cKP, for every vertical and 
horizontal segment and to sum over all possible 
configurations of the segments. The procedures are 
exactly the same as those described in §§ 3 and 4 of 
(II). The only difference is that the extra coefficients Ro 
and Rg are included in the expressions of (20a), (20b), 
(23) and (25). Thus, we obtain the intensity fields as 
follows: 

( l o )  = IAI 2 exp --2 h Re {(xg x_e) Ro}(S o + Sg) 

× I~¢g x gl (So/Sg)X/21114z21 tog tC_gl Rg(s  o Sg)l/2], (26a) 

( I g )  = IAI2 exp--2rz Re {OCgX_g) Ro}(S ° + Sg) 

X I K g l  2 I014r21Xg X_glRg(S o Sg)1/2], (26b) 

where 10 and 11 are the modified Bessel functions of the 
zeroth and the first order respectively. As explained in 
(II), the present solution satisfies the energy-transfer 
equation of the form 

a(Io) 
Os o 

a(6) 
m 

COS g 

2 r z R e { ( x e x _ g ) R o }  ( I o ) +  2h lx_g l2  R e ( I g  ),  

(27a) 

2rERe{(xgx_~)R o} <Ig) + 2r21 xgL 2 Rg<Io). 

(27b) 

The attenuation and diffraction powers (coupling 
constants) are reduced by the factors R o and Rg, 
respectively, compared with the previous results. 

(a) The reduct ion f a c t o r s  R o a n d R  e 

The essence of the present results lies in the 
introduction of the reduction factors R o and R e [ef. 
equations (21) and (24a)]. If the power series can be 
terminated because of rapid decrease of the correlation 
volumes with their order, one can base a calculation of 
the factors, in principle, on the model of lattice 
distortion. 

Here, however, we shall discuss the physical mean- 
ings of R o and R e based on an approximate but 
acceptable model of the correlation volumes V~ J) which 
are given in equation (10b). We then obtain the 
expressions 

R o = 1 -- f12 r~ z + fl~ z~ z 2 + . . . .  (1 + f12 rE ~Cg ~:_g)-', 

(28a) 

= 1 2 Z , 2 )  . . .  G 1 - ½ &  r~(z + z * ) +  ~/~2 r~(z 2 + zz* + + 

= [& q ( %  x _ g -  ~* x*g)] -1 

x log[(1 +fl2r~XgX_g)/( l !  + f12 r~ K* k'e). (28b) 

Expressions (28a,b) are valid only when the series 
satisfy the condition I flz rE X~ K_~I < 1, which leads to 

r2 < A/ ( f l z )  ',2. (29) 

With this result, the coupling constants can be reduced 
to half those given in the simpler theory described in 
(II). 

Expressions (28a,b) are physically understandable, 
because the reduction of the coupling constants 
increases with increases of diffraction power (x~x g) 
and correlation lengths r2 and r2f12, which are essen- 
tially measures of crystal perfection. The conventional 
and intuitive treatments which assume ideally perfect 
crystals for a mosaic block can be partially justified in 
the sense that the factors R o and R e are expressed by 
the power series of (--Kg x g). However, the wavelength 
dependence and the angular dependence are hardly 
justified. In fact, the degree of the reduction must 
depend upon the type and the degree of crystal 
perfection, which are introduced through the cor- 
relation length (volume) in the present theory. This 
point escapes the theory of the conventional treatment• 

(b) Appl icabi l i ty  

The present formulation eliminates the most essential 
approximation of the previous theory: the assumption 
of statistical independence of KP's. By introducing 
higher-order correlations of the lattice phase factors, all 
optical routes are taken into account. For this reason, 
certainly, the present theory can be applied to a wider 
range of crystal perfection than can the previous one. 



N. K A T O  15 

The theory still assumes the factorization of the 
correlation functions [cf. equations (12) and (14)1. 
According to arguments similar to those described in 
Appendix B of (II) for f~(y), the factorization of {f,} 
can also be justified, provided that the {f~} decrease 
rapidly with increase of any one of their arguments. 

In fact, the present formalism assumes integrability 
of { f ,  }. This assumption is not always acceptable. For 
example, if the thermally vibrating crystals have an 
averaged perfect lattice, f l (y )  must have the form 

f~(y) = exp (--2M,)  + g(y), (30) 

where the first term is the Debye-Wal ler  factor in the 
kinematical theory and g(y) implies the correlation 
term. In this case, one cannot define a finite correlation 
length for fl(Y). The present formalism cannot be 
applied to this case. 

Even in the case when V2 (") can be defined, the theory 
would be meaningless if the power series of the 
reduction factors were to diverge. For this reason, it 
seems reasonable to take the convergence criterion as a 
measure of the applicability of the present theory. In the 
particular case of V2 (") given by equations (10a,b), the 
criterion is given by equation (29). It is conjectured, 
therefore, that the present theory is applicable when 

r 2 < A .  (31) 

One then obtains 

(9(lo) O( Ig) 
~ + - -  - - E { ( I o )  + ( Ig)} ,  (34) 

Os o Osg 

and the enhancement coefficient E is given by 

E = 4 ZE RolXigl 2 (35) 

The positiveness of E does not violate energy conser- 
vation, because the normal absorption coefficient Fto = 
2K / exceeds the enhancement coefficient. (Note that 
IXo~l > Ixgl and 1 > 2?;2lKgK_gl 1/2 >> 2r2RoltCigl.) 

The presence of a non-zero E implies anomalous 
transmission, in the case of secondary extinction. The 
physical meaning of this anomalous transmission is 
interpreted as Borrmann anomalous transmission in a 
perfect-crystal range of length r 2. In the present 
treatment, however, the effect may have no significant 
role since /z o ~ E. In the very special cases such as 
I/¢gl_~lKgl, the anomalous transmission becomes 
significant. However, we need detailed mathematical 
analysis for the case of a complex reduction factor R o. 

In conclusion, the present theory derived the coup- 
ling constants of the energy-transfer equation from first 
principles of wave equations. It is highly desirable to 
check the theory experimentally in order to elucidate 
the nature of secondary extinction. 

(c) Effects o f  absorption 

In non-absorbing crystals, where X g X g  = Ixgl 2 = 
Itc_gl z and consequently R o = Rg, the energy conser- 
vation stated by 

~(Io)  O(Ig) 
~ + ~ = 0  (32) 

gs o Osg 

is automatically satisfied. In absorbing crystals, the 
relations for Kg x_g etc. must be modified, because of 
anomalous dispersion, as follows (see, for example, 
Zachariasen, 1945; Azaroff, 1974): 

K ~ X g =  IK~I:-Jx~l 2 + 2iIK~,IIK~I cos(~0,-~0z), (33a) 

Ixgl 2 = IK~I 2 + Ix~l 2 + 21x~llK~l sin(~o,-- q~z), (33b) 

I K _ g l  2 =  [Kgl 2 + IKg] 2 -  2lKgl II¢gl sin(~01-- ~02), (33c) 

where xg and xg are the Fourier coefficients of x r and 
x i, respectively, in the phenomenological expression of 
the polarizability tc = x" + ix i, and ~01 and ~02 are the 
phase angles of Xg and xg respectively. In centro- 
symmetric crystals, ~01 is identical to ~02. Moreover, in 
the cases where either I K~r ~ IKgl or the reduction 
factors are close to 1, we can expect that R o = Rg (real, 
positive). To avoid complexity, we have discussed only 
these cases here. 

APPENDIX A 
Correlation function and correlation volume 

In § III, the correlation function f ( n )  and the intrinsic 
correlation function fn(n) are introduced. Here, the 
abbreviated notation n is used for the arguments 
( Y l , X l , -  . . , X  n _ ,Y~). 

For an intrinsic correlation function, we have defined 
the correlation volume by equations (8a,b). Similarly, 
one can define the correlation volume for f ( n )  as 
follows: 

o 0O A A 

B[ ") .... f d{y r } f..-J d{x r } f(n), (A. la) 
0 0 0 0 

00 A A n 

B~ ") = Y""  Y d{Yr} f" "" f d{xr} I-I f ( Y r )  f (n ) ,  
0 0 0 0 r =  1 

(A.lb) 

where the integration limits A are introduced to avoid 
divergence. Here, A is a length which is sufficiently 
larger than the correlation length r. In the following, we 
need not distinguish cases 1 and 2, so that the suffixes 
are omitted. 

First, we obtain a relation between {f(n)} and 
{f,(n)}. As shown in equation (7), the last factor of 
every term of f ( n )  in its decomposed form (right-hand 
side) must be one of f j( j) .  Thus, f ( n )  can be expanded 
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in terms of fj(j) and the coefficients must be f ( n  - j). 
Thus, one can see that 

n - - 1  

f (n )  = Z f ( n -  j) f j( j)  + f .(n).  (A.2) 
j = l  

In this expression, the sequence of KP's in (n -- j )  and 
(j) must be kept identical to the original one of (n). 

Next, we integrate (A.2) over the range (0,A) with 
respect to {x~ } and over the range (O,oo) with respect to 
{y,}. Since A > r, the range (O,A) is equivalent to (0,o9) 
in the case of V ~J). Then, we have the relation 

n--I 
B oO = ~. B o'-J) A V  ~.i) + V o', (A.3) 

j = l  

where A appears due to the integration of a hidden 
variable x,_j. 

In the case of B<"), if we approximately neglect the 
end effects of a sequence of KP's, the integrations of 
{x~} and of {Yr} are equivalent in the respective cases 
so that we expect the form of B (") to be 

B (n) = 2-n(zl + ~27) n - 1  (/2 _> 1). (a.4) 

Here, the factor r" is due to the integrations of {y~ } and 
(A +/~r)"- 1 is due to the integrations of { x r }. 

Substituting from (A.4) into (A.3), one can easily see 
that: 

g (1) : 2", V(2) : ~2"3, V(3) ~__ ~ 2  2"5 . . . .  

By the use of mathematical reduction, we have 

v~n~ = / ? " -  ~ r 2"- ~ (A.5) 

With the approximation stated in connection with (A.4) 
for the correlation volume B ~"), the correlation volume 
V (") must have this form. 

A P P E N D I X  B 
Evaluation of  the multiple sum (18) 

Here, we consider the multiple sum 

oo 1 
[Q")Jp, [Q¢2)1"~., (B.1) 

S = Z  Z pl!pz!.." "" 
n=O pj=O 

with the condition 

n = ~ j x pj. (B.2) 
Y 

In equation (B. 1), the notation 

Q(J) = v~z.i)(-Xg K g) g l o (B.3) 
is employed. 

The method used here is well known as the method 
of Fowler and Guggenheim and the manner of its 
application is very similar to that in the theory of 
imperfect gas (Born & Fuchs, 1938). The summation 
Zoi in equation (B.1) is equivalent to that to pick up the 
coefficient of ~" in the function of a complex variable ~, 

oo 1 
F(~) S" [Q~U ~]p, [Q~Z) ~2]p2..., (B.4) 

p , !p2! . . .  
pj=O 

without any condition on {p j}. This operation can be 
performed by the method of contour integral, and we 
obtain 

1 
S =  2~i f ~ F ( ~ ( 1 / ~  n+l) d~, (B.5) 

n = 0  

where ~d~ implies a closed-path integral around the 
origin. 

The summation in equation (B.4) can be performed 
easily as 

F ( O  = exp ~ Q<Y) ~J. (B.6) 
J 

The summation in equation (B.6) is given, provided 
that I~L > 1, as 

1 
Z (1/~+' )  = ~ .  (B.7) 

Since F(Q is regular, we have S as the residue of F(~) 
at ~ = 1, which is only a pole within the integral path. 
Thus, we obtain 

S = exp Z QO~ ~g. (B.8) 
y 

This result leads to equation (18b). 
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